Dipolar waves map the structure and topology of helices in membrane proteins.

نویسندگان

  • Michael F Mesleh
  • Sangwon Lee
  • Gianluigi Veglia
  • David S Thiriot
  • Francesca M Marassi
  • Stanley J Opella
چکیده

Dipolar waves describe the structure and topology of helices in membrane proteins. The fit of sinusoids with the 3.6 residues per turn period of ideal alpha-helices to experimental measurements of dipolar couplings as a function of residue number makes it possible to simultaneously identify the residues in the helices, detect kinks or curvature in the helices, and determine the absolute rotations and orientations of helices in completely aligned bilayer samples and relative rotations and orientations of helices in a common molecular frame in weakly aligned micelle samples. Since as much as 80% of the structured residues in a membrane protein are in helices, the analysis of dipolar waves provides a significant step toward structure determination of helical membrane proteins by NMR spectroscopy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Silico and in Vitroinvestigations on cry4aand cry11atoxins of Bacillus thuringiensis var Israelensis

In the present study we attempted to correlate the structure and function of the cry11a (72 kDa) and cry4a (135 kDa) proteins of Bacillus thuringiensis var israelensis. Homology modeling and secondary structure predictions were done to locate most probable regions for finding helices or strands in these proteins. The JPRED (JPRED consensus secondary structure prediction server) secondary struct...

متن کامل

Phage-induced alignment of membrane proteins enables the measurement and structural analysis of residual dipolar couplings with dipolar waves and lambda-maps.

At pH > 6 added filamentous bacteriophage fd is compatible with many of the detergents used to solubilize membrane proteins for solution NMR studies of membrane proteins and, therefore, serves as an alignment media. In combination with strained polyacrylamide gel alignment, Dipolar Waves can be used to directly assess the secondary structure and a lambda-map extracts the order tensors for de no...

متن کامل

Structure determination of membrane proteins by NMR spectroscopy.

Current strategies for determining the structures of membrane proteins in lipid environments by NMR spectroscopy rely on the anisotropy of nuclear spin interactions, which are experimentally accessible through experiments performed on weakly and completely aligned samples. Importantly, the anisotropy of nuclear spin interactions results in a mapping of structure to the resonance frequencies and...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Structural dynamics and conformational equilibria of SERCA regulatory proteins in membranes by solid-state NMR restrained simulations.

Solid-state NMR spectroscopy is emerging as a powerful approach to determine structure, topology, and conformational dynamics of membrane proteins at the atomic level. Conformational dynamics are often inferred and quantified from the motional averaging of the NMR parameters. However, the nature of these motions is difficult to envision based only on spectroscopic data. Here, we utilized restra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 125 29  شماره 

صفحات  -

تاریخ انتشار 2003